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Background
Interstitial lung disease (ILD) is a heterogeneous group of 
lung parenchymal diseases that are clinically character-
ized by exertional dyspnea, dry cough, inspiratory crack-
les and clubbed fingers, and pathologically characterized 
by varying degrees of inflammation and fibrosis. Some 
ILD may be secondary to known triggers such as auto-
immune diseases, hypersensitivity reactions to inhaled 
antigens or environmental stimuli, or granulomatous dis-
eases, while other ILD has no identified cause [1]. Idio-
pathic pulmonary fibrosis (IPF) is the most aggressive 
form of ILD from an unknown cause, characterized by 
chronic progressive fibrosis leading to irreversible lung 
function decline, progressive respiratory failure, and high 
mortality rates. The adjusted incidence and prevalence 
of idiopathic pulmonary fibrosis (IPF) are 0.09–1.30 and 
0.33–4.51 per 10,000 persons [2], respectively. Based on 
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Abstract
The standard approach to diagnosing idiopathic pulmonary fibrosis (IPF) includes identifying the usual interstitial 
pneumonia (UIP) pattern via high resolution computed tomography (HRCT) or lung biopsy and excluding known 
causes of interstitial lung disease (ILD). However, limitations of manual interpretation of lung imaging, along 
with other reasons such as lack of relevant knowledge and non-specific symptoms have hindered the timely 
diagnosis of IPF. This review proposes the definition of early IPF, emphasizes the diagnostic urgency of early IPF, and 
highlights current diagnostic strategies and future prospects for early IPF. The integration of artificial intelligence 
(AI), specifically machine learning (ML) and deep learning (DL), is revolutionizing the diagnostic procedure of 
early IPF by standardizing and accelerating the interpretation of thoracic images. Innovative bronchoscopic 
techniques such as transbronchial lung cryobiopsy (TBLC), genomic classifier, and endobronchial optical coherence 
tomography (EB-OCT) provide less invasive diagnostic alternatives. In addition, chest auscultation, serum 
biomarkers, and susceptibility genes are pivotal for the indication of early diagnosis. Ongoing research is essential 
for refining diagnostic methods and treatment strategies for early IPF.
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historical data, untreated IPF patients have a median sur-
vival of 3 to 5 years after diagnosis [1, 3]. Timely antifi-
brotic treatment with drugs including pirfenidone and 
nintedanib has been shown to slow, rather than reverse, 
the decline in lung function and to prolong patients’ sur-
vival [4–7]. However, the benefits of this early interven-
tion rely on early diagnosis, making the diagnosis of early 
IPF very important.

Given the current research gaps and clinical gaps in the 
diagnosis of early IPF, this review proposes the defini-
tion of early IPF, summarizes the diagnostic methods for 
early IPF, with a special focus on radiology, i.e., applica-
tion of artificial intelligence (AI) with machine learning 
(ML) and deep learning (DL) into the analysis of thoracic 
images including interstitial lung abnormalities (ILAs), 
use of bronchoscopic examination and adoption of chest 
auscultation, serological biomarkers and susceptibility 
genes, and discusses current challenges and future direc-
tions in the diagnosis of early IPF.

The current diagnostic criteria and procedure of 
IPF
International consensus guidelines recommend a multi-
disciplinary approach to diagnosing IPF, which involves 
ruling out known ILD causes and performing high-res-
olution computed tomography (HRCT) or lung biopsy 
with a usual interstitial pneumonia (UIP) pattern [1]. 
HRCT plays a crucial role in IPF diagnosis, with radiolo-
gists categorizing it into four types based on confidence 
levels in UIP: UIP pattern, probable UIP pattern, indeter-
minate UIP pattern, and alternative diagnosis [8]. Patients 
with a UIP pattern or probable UIP pattern on HRCT can 
be diagnosed as IPF following multidisciplinary discus-
sion in the appropriate clinical context. Further diagnos-
tic evaluation based on histopathology is necessary for 
patients with an indeterminate UIP pattern or an alter-
native diagnosis. Pathologically, UIP serves as the char-
acteristic histopathological hallmark of IPF, characterized 
by fibrotic temporal and spatial heterogeneity, fibroblas-
tic foci, collagen deposition, and excessive deposition of 
extracellular matrix (ECM) leading to distortion of nor-
mal lung architecture, which is usually accompanied by 
honeycombing cyst formation [9]. Transbronchial lung 
cryobiopsy (TBLC) may be preferred over surgical lung 
biopsy (SLB) in certain patient populations. For patients 
with inconclusive TBLC results, subsequent SLB may be 
reasonable [10]. Considering the morbidity and mortality 
associated with surgical biopsies [11], HRCT imaging is 
the primary choice for IPF diagnosis.

Diagnostic delay in IPF
Delays in the diagnosis of IPF are usual in clinical prac-
tice. A recent prospective study in Denmark investigated 
all new IPF patients (n = 204) from two ILDs centers, 

finding a median time of 2.1 years from symptom onset 
to IPF diagnosis, with 25% of patients experiencing delays 
exceeding five years [12]. From a survey conducted in 
Germany, France, the United States, and Japan and 
the other study using data from the IPF-PRO Registry, 
the median time from symptom onset to diagnosis was 
reported to be 13 months and 13.6 months, respectively 
[13, 14]. In contrast, surveys based on large claims-based 
data sets tend to have worse outcomes than those based 
on IPF registries. Herberts et al. reported that 98% of 
patients had other initial respiratory diagnoses before 
the index diagnosis of IPF, and the average time to a diag-
nosis of IPF was 2.7 years [15]. In a survey of medicare 
beneficiaries, nearly one-third had their first CT scan 
more than 3 years before diagnosis, indicating a con-
siderable diagnostic delay [16]. Reasons for delayed IPF 
diagnosis vary, including its early nonspecific symptoms 
such as dry cough and exertional dyspnea being misdiag-
nosed as more common conditions like asthma, chronic 
obstructive pulmonary disease (COPD), or heart disease 
[17]. According to the current guideline, some early-
stage patients may fail to meet the diagnostic standard at 
their visit [8]. Examinations to prove or diagnostic treat-
ment of other suspected diseases will prolong diagnostic 
time and delay antifibrotic therapy [12]. The complexity 
of the IPF diagnostic process, such as multidisciplinary 
discussion (MDD), may lead to a longer diagnosis time 
[18]. Given that IPF is relatively rare, healthcare profes-
sionals encountered by patients in the early stage of the 
disease may lack knowledge and awareness of IPF, result-
ing in delayed referral to specialized ILD centers [19]. A 
specialized ILD center can make a diagnosis and provide 
more specialized care and extra benefits such as disease 
education or support groups [20].

Counterintuitively, there are conflicting views across 
studies on whether there is a correlation between the 
delay in diagnosis and patient survival [13, 21–23]. How-
ever, when patients are stratified according to disease 
severity, the positive prognostic effect of a shorter delay 
in diagnosis is more pronounced in patients with mild 
disease [13, 21]. Longer delay in diagnosis is associated 
with poorer quality of life, and worse quality of life is 
associated with lung function deterioration, comorbid-
ity development, disease progression such as emergency, 
hospitalization, and mortality [7, 21].

The definition and significance of early IPF
In this review, we tentatively propose a definition of early 
IPF. Early IPF refers to a disease stage of IPF where CT 
presentation of interstitial changes with a fibrosis score 
less than 10%, in which UIP /probable UIP on CT can be 
present or absent with UIP/probable UIP on histopathol-
ogy by lung biopsy (see Fig.  1) [24–26]. Extra attention 
should be paid to ruling out known causes of UIP, such 
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as hypersensitivity pneumonia (HP) and autoimmune 
diseases. Considering the complexity of ILD, early IPF 
could be a provisional diagnosis and should be reviewed 
during the follow-up. If remission occurs on subsequent 
CT follow-up or the etiology of other ILD is found, the 
diagnosis of early IPF should be removed or replaced 
with an alternative diagnosis. The diagnosis of early IPF 
can be crucial for optimizing the treatment strategy and 
improving the prognosis for these patients. The diagno-
sis of early IPF may allow healthcare providers to engage 
with patients and their families in a more focused pattern 
and offer a better management of the disease [5].

Thoracic image analysis with AI for early IPF 
diagnosis
The image features of HRCT play a crucial role in the 
diagnosis of IPF. Drawbacks to the manual interpretation 
of these HRCT features include subjectivity of interpre-
tation, low inter-observer agreement, and visual fatigue 
of radiologists or respiratory clinicians. An AI-based 
computer vision can overcome these challenges. Com-
puter-aided diagnosis (CAD) systems can be developed 
based on AI technology to realize the classification of 
HRCT images. DL is a subset of AI and a form of arti-
ficial neural network (ANN) [27], while ML is a branch 
of AI that enables computer systems to learn from data 
and improve performance without explicit programming 
[28].

Some representative diagnostic models for IPF using 
HRCT images and their key attributes including sample 
size, parameters adopted, key methods, and major results 
are listed in Table  1 based on publication year [23–34]. 
The CAD systems can be divided into DL diagnosis sys-
tems (can be combined with ML) and radiomics diagno-
sis systems (can be combined with ML/DL). At present, 
the DL diagnosis system has been relatively mature. 
Walsh et al. took expert consensus as the reference stan-
dard and used DL to classify CT-UIP patterns in ILDs 
patients, and its accuracy was 0.73 in the external test set 

[29]. The INTACT diagnosis system developed by Chris-
tine et al. combines DL semantic segmentation and a 
random forest classifier to classify CT patterns of ILDs, 
and the accuracy was 0.81 [30]. Maddali et al. used pre-
trained DL models by CT to distinguish IPF from ILDs. 
The c-statistic of this model was 0.87 [32]. Radiomics has 
also been incorporated into the IPF diagnostic model in 
recent years. Refaee et al. developed a CT-based diagno-
sis tool for IPF through hand-crafted radiomics(HCR) 
and DL(3D Densenet-121), which combines patients’ 
gender, age, BMI, and lung function data, and realized 
model integration by obtaining the mean prediction of 
two models, achieving an AUC of 0.917 [28]. Recently, 
Fontanellaz et al. used a 3D CNN-MLP Mixer to segment 
lungs and airways, a UNet and 2D CNN-MLP Mixer for 
semantic segmentation, and a random forest classifier 
for diagnosis. In the case of classifying the combined 
patterns of UIP according to the need for biopsy or not, 
both accuracy and F-score were 0.77 [34]. The prediction 
model for histopathological UIP has also been developed 
in recent years. Shaish et al. developed the first prediction 
model for histopathological UIP, which divided HRCT 
into wedges to simulate SLB and used the DL model to 
predict histopathological UIP, with sensitivity of 0.74 and 
specificity of 0.58 [25]. The DL model developed by Bratt 
et al. used CT scans of ILDs patients with three patholog-
ical types: UIP, nonspecific intersitial pneumonia (NSIP), 
and chronic HP to predict histopathological diagnosis, 
achieving an AUC of 0.87 [27].

The procedure of the CAD model
There are four processes for training an ML computer-
aided diagnostic model. The first is data preparation, 
i.e. data collection, preprocessing, and dataset splitting. 
After preprocessing, the dataset needs to be split. Cur-
rently, the commonly used splitting method is a training 
set (60% for modeling), a validation set (20% to prevent 
overfitting), and a test set (20% to validate the model). 
The second step is model selection, i.e. selecting a model 

Fig. 1 The natural history of IPF and definition of early IPF. In this review, the natural history of IPF can be broadly divided into 3 stages: early, middle stage 
and advanced. Early IPF refers to a disease stage where the patient’s symptoms(dry cough and exertional dyspnea) are usually mild or absent, HRCT pat-
tern is mostly indeterminate UIP or subpleural fibrotic ILA. However, the biopsy result reveals histologic UIP or probable UIP. As the disease progresses to 
the middle stage IPF or the advanced IPF, symptoms become increasingly severe, and the HRCT pattern may evolve towards UIP or probable UIP.
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and cross-validation. The third step is to train the model 
to obtain optimal parameters and tune hyperparam-
eters. Lastly, model evaluation involves assessing the 
model in the previously mentioned test set, with evalu-
ation metrics typically including accuracy, precision, 
recall, F1 score, etc. The confusion matrix presents the 

correspondence between predicted results and true 
labels of a classification model on the test set in matrix 
form. Then the performance and efficacy of ML models 
can be more intuitively reflected (see Fig. 2a).

Table 1 Diagnostic models for IPF using HRCT images
Research Sam-

ple 
size

Other parameters Key methods Results
Basic 
information

Medical 
history

Blood 
test

Pulmo-
nary func-
tion test

Walsh et 
al.,2018 [29]

1157 
CT 
scans

CNN(Inception-ResNet-v2) classifier AUC:0.85,
accuracy:0.73,
sensitivity:0.79,
specificity:0.90

Christine et 
al.,2019 [30]

105 
cases

√ √ √ √ anatomy segmentation,
CNN tissue characterization,
random forest classifier

accuracy:0.81,
sensitivity:0.79,
specificity:0.67,
F-score:0.80

Shaish et al., 
2021 [86]

301 CT 
scans

virtual wedge resection, CNN classifier,
logistic regression

accuracy: 0.68,
sensitivity: 0.74,
specificity: 0.58

Yu et al., 2021 
[42]

1020 
CT 
scans

CNN classifier (baseline, MobileNet, VGG16, 
ResNet-50, DenseNet-121)
with domain knowledge enhanced loss 
function

baseline:
sensitivity:0.86,
specificity:0.94,
accuracy:0.91
four other models:
overall accuracy 
greater than 0.95

Bratt et al., 
2022 [87]

1236 
cases

CNN (EfficientNet-B3)
classifier

AUC:0.87

Refaee et al., 
2022 [88]

474 CT 
scans

handcrafted radiomics feature extraction, 
random forest classifier,
CNN (Densenet-121) classifier,
model ensemble

AUC:0.92,
accuracy:0.85,
sensitivity:0.89,
specificity:0.82

Furukawa et 
al., 2022 [84]

1068 
cases

√ √ √ √ DL (FCN-Alexnet) tissue characterization,
SVM classifier

accuracy:0.84,
sensitivity:0.81,
specificity:0.86

Mei et al., 
2023 [89]

449 
cases

√ √ √ √ DCNN classifier,
ViT classifier,
MLP classifier,
XGBoost classifier,
SVM classifier,
model ensemble

AUC:0.83, 
sensitivity:0.82, 
specificity:0.68

Yu et al., 2023 
[43]

878 CT 
scans

multi-scale, domain knowledge guided 
attention,
random forest classifier

AUC: 0.99

Maddali et al., 
2023 [90]

more 
than 
2590 
cases

pre-trained CNN(3D ResNet) classifier,
model ensemble

c-statistic: 0.87,
PPA:0.81,
NPA:0.75

Chung et al., 
2024 [91]

3155 
CT 
scans

Wide Residual Networks based CNN feature 
extraction, SVM classifier

sensitivity:0.81, 
specificity:0.77

Fontanellaz et 
al., 2024 [92]

338 
cases

3D CNN-MLP-Mixer anatomic segmentation,
2D-UNet,3D-UNet, and 2D CNN-MLP Mixer tis-
sue characterization,
Radiomics

balanced 
accuracy:0.77
F-score:0.77

Abbreviations: CNN = Convolutional Neural Network, AUC = Area Under Curve, SVM = Support Vector Machine, DCNN = Deep Convolutional Neural Network, 
ViT = Vision Transformer, MLP = Multilayer Perception, XGBoost = eXtreme Gradient Boosting, PPA = Positive Percent Agreement, NPA = Negative Percent Agreement
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Major imaging diagnostic tools in CAD models of IPF
Quantitative CT
The focus of quantitative CT methods is on the grayscale 
and geometric structures of the images, which is well-
suited for CAD systems to excel [31]. Hartley et al. com-
pared the histograms of HRCT scans from 24 IPF patients 
and 60 individuals with extensive occupational asbestos 
exposure. The histogram distribution of IPF patients 
was significantly shifted to the right (higher density) and 
flatter compared to asbestos-exposed participants [32]. 
Computer-aided lung informatics for pathology evalu-
ation and rating (CALIPER) utilizes computer vision 

techniques based on local volume histograms and mor-
phological analysis to characterize and quantify different 
HRCT patterns. Pulmonary vascular-related structures 
derived from CALIPER can be utilized to predict histo-
logical UIP patterns in IPF patients whose HRCT indi-
cates non-IPF [33]. Uppaluri et al. compared adaptive 
multiple features method (AMFM) with mean lung den-
sity (MLD) and histogram-based analysis, demonstrat-
ing that the AMFM method outperformed the other 
two methods in characterizing four groups of subjects: 
normal lung, emphysema, IPF, and nodules [34]. Quan-
titative lung fibrosis (QLF) is a set of measurements that 

Fig. 2 The procedure of training a medical image-based CAD model and main imaging diagnostic tools in IPF CAD models. a) Training a machine learn-
ing diagnostic model mainly includes the following processes. The first is data preparation, including data collection, preprocessing, and dataset splitting. 
Data preprocessing includes normalization, data cleaning, feature selection, denoising, etc. After preprocessing, the dataset needs to be split. Currently, 
the commonly used splitting method is a training set (60% for modeling), a validation set (20% to prevent overfitting), and a test set (20% to validate the 
model). Choose the appropriate machine learning (ML) model based on the problem type and data characteristics, then cross-validation must be con-
ducted to select the best-performing model. After selecting a model, it’s necessary to train the model to obtain optimal parameters and tune hyperpa-
rameters, which is also called Tuning. Lastly, model evaluation involves assessing the model using the test set, with evaluation metrics typically including 
accuracy, precision, recall, F1 score, etc. b) Machine learning image processing methods for IPF can be divided into two categories: (1) quantitative CT, 
which includes simple thresholding methods, e.g., histogram analysis, and complex spatiotemporal algorithms, e.g., data-driven textural analysis (DTA), 
quantitative lung fibrosis(QLF), quantitative ILD(QILD) and adaptive multiple features method (AMFM); (2) deep learning (DL), which includes convolu-
tional neural network (CNN) and vision transformer(ViT)
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include quantitative scores of honeycombing, ground-
glass, and composite ILD [35]. A study on scleroderma-
associated pulmonary fibrosis indicated that QLF scores 
are sensitive in detecting mild PF, and are appropriately 
conservative in estimating the extent of pulmonary fibro-
sis [36]. Most conventional quantitative CT methods rely 
on feature engineering, which means manual selection or 
construction of features relevant to the accurate output 
of the model. Feature engineering is time-consuming and 
highly specific, requires high-level domain expertise, and 
might overlook clinically significant image features yet 
undetectable by the human eye [37].

DL
DL can automatically learn task-relevant features, and 
attenuate and eventually filter out irrelevant features [38]. 
By harnessing the power of DL algorithms such as con-
volutional neural network (CNN) and vision transformer 
(ViT), it becomes feasible to detect novel imaging feau-
tures that may not be readily identifiable. This is particu-
larly true when early CT images of IPF patients exhibit 
atypical patterns besides UIP or probable UIP [8].

CNN represents a specialized class of ANN that draw 
its architectural inspiration from neurons within biologi-
cal visual systems [39]. Two important applications for 
CNN in IPF diagnostic imaging are segmentation and 
classification. Semantic segmentation plays an important 
role in image understanding by assigning a categorical 
label to every pixel in an image [40]. For example, nnU-
Net is a novel self-configuring tool for biomedical image 
segmentation that is readily available for immediate 
use without expert knowledge or computing resources 
beyond standard network training [41]. The classification 
capabilities of CNN extensively utilized in the diagnos-
tic algorithms for IPF. In the context of diagnostic imag-
ing, classification can be achieved by assigning medical 
images to different categories, i.e. with/without disease. 
For example, Yu et al. developed efficient diagnostic 
models for IPF using chest CT scans and domain knowl-
edge. The models input HRCT and outputs the disease 
label (IPF/non-IPF) [42, 43].

ViT applies the transformer architecture directly to 
sequences of image patches for image recognition tasks. 
ViT achieves excellent results in image classification 
when pre-trained on large datasets [44]. Wu et al. pro-
posed a ViT model that classified HRCT emphysema into 
three subtypes, with an average accuracy of 0.96, surpass-
ing conventional methods such as ResNet50 [45]. Mei et 
al. created a DCNN and a ViT to learn the HRCT image 
patterns of 5 different ILDs and integrated them with 
classifiers using clinical information to develop a joint 
model. For UIP classification, the joint model reached an 
AUC of 0.83 [30] (see Fig. 2b).

Identification and classification of ILAs for early IPF 
diagnosis
ILAs refer to radiological abnormalities in the lung inter-
stitium on CT scans in individuals who were previously 
undiagnosed or suspected of having ILDs. The Fleischner 
Society has published a position paper that proposed 
a standardized definition of ILA [46]. ILAs can be fur-
ther classified according to the presence and distribu-
tion, i.e. non-subpleural ILAs, subpleural nonfibrotic 
ILAs, and subpleural fibrotic ILAs, as depicted in Fig. 3. 
A study revealed that during a 2-year follow-up period, 
49% of non-fibrotic ILA showed improvement, 1% of 
non-fibrotic ILA progressed, and 37% of fibrotic ILAs 
progressed. Certain imaging characteristics can increase 
the likelihood of progression, such as reticular opacities 
in the subpleural region, predominantly lower lung dis-
tribution [47].

The clinical manifestations of ILAs mainly include 
dyspnea, cough, fatigue, chest pain, decreased appetite, 
weight loss, and anxiety, which share similarities with 
ILDs or IPF. The risk factors of ILAs progression include 
age, smoking history, gender, environmental exposure, 
and genetics, which also share similarities with ILDs or 
IPF. ILAs may represent early manifestations of ILDs or 
IPF, and classifying the types of ILAs can help under-
stand the natural course of ILDs or IPF, enabling early 
management and timely intervention. Recently, among 
41 patients with ILAs detected on baseline CT, 10 cases 

Fig. 3 Major types of ILA. ILAs are divided into three subcategories, non-subpleural ILAs (A), subpleural nonfibrotic ILAs (B), and subpleural fibrotic ILAs 
(C)
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(24.4%) were diagnosed as ILDs on baseline CT, with an 
average time to diagnosis of 4.47 years [48]. This sug-
gests that ILAs may serve as a basis for early ILDs or IPF 
diagnosis.

Bronchoscopic examination for early IPF diagnosis
TBLC
SLB is used to apply to patients with suspected IPF or 
patients with indeterminate IPF in a multidisciplinary 
discussion [10]. However, SLB has substantial morbid-
ity and mortality rates [52–54]. TBLC is performed by 
using a cryoprobe inserted into a bronchoscope placed 
at the target site to obtain peripheral lung tissue [55]. 
Recent evidence suggests that TBLC is less invasive and 
less costly, with fewer respiratory infections and less pro-
cedural mortality [10, 56]. TBLC is recommended as an 
acceptable alternative to SLB. However, it is a conditional 
recommendation with very low-quality evidence and the 
practice of TBLC is restricted to medical centers with 
experience in performing TBLC and interpreting patho-
logical data [8]. When the TBLC result is inconclusive or 
suggestive of an alternative diagnosis, SLB can be per-
formed to provide additional information [57]. Overall, 
TBLC is becoming a first-line minimally invasive method 
for tissue biopsy of ILDs or IPF.

Genomic classifier
The Envisia Genomic Classifier is an RNA sequenc-
ing-based molecular diagnostic tool that analyzes the 
expression of 190 genes in transbronchial lung biopsy 
(TBLB) samples. Utilizing ML algorithms, it differenti-
ates between UIP and non-UIP patterns, providing criti-
cal evidence for precise diagnosis [49]. A validation study 
involving 96 patients demonstrated the classifier’s sensi-
tivity of 60.3% and specificity of 92.1% for histologically-
confirmed UIP patterns [50]. Another study revealed 
that incorporating the genomic classifier with TBLC 
significantly increased diagnostic confidence from 43 to 
93% (P = 0.023) [51]. These findings suggest the Envisia 
Genomic Classifier holds substantial promise as a future 
auxiliary diagnostic tool that could reduce reliance on 
lung biopsies for IPF diagnosis.

Endobronchial optical coherence tomography (EB-OCT)
The EB-OCT technique generates high-resolution 
images of tissue structures with a resolution of 10–15 μm 
and a depth of 2–3  mm using scattered near-infrared 
light under the guidance of bronchoscopy [58]. Wij-
mans et al. identified OCT patterns of fibrotic ILDs 
in a patient cohort of 11 ILDs patients, which included 
thickening and loss of alveolar network structure (fibro-
sis), round-shaped air-filled spaces (cysts), and tube-like 
structures in peripheral lung areas (bronchiectasis) [59]. 
EB-OCT can help physicians identify UIP/IPF patients by 

detecting the microstructural features of UIP [60]. A pro-
spective diagnostic study involving 27 patients showed 
that EB-OCT had both sensitivity and specificity of 100% 
for the histopathological UIP and clinical diagnosis of 
IPF. Furthermore, EB-OCT exhibited high concordance 
with histopathology in diagnosing fibrotic patterns [61]. 
Polarization-sensitive(PS)-EB-OCT is a functional exten-
sion of EB-OCT that allows the simultaneous detection 
of endogenous birefringence in ordered tissues [62]. A 
recent study demonstrated that PS-EB-OCT can accu-
rately visualize and classify fibrotic patterns in both UIP 
and non-UIP fibrotic ILD. Furthermore, it can quanti-
tatively differentiate the birefringence of fibrosis types 
[63]. An abstract presented at the 2021 ERS International 
Congress suggested that PS-EB-OCT may enable the 
quantification of fibrosis without the need for tissue sam-
pling, providing information on the progression of fibro-
sis during continuous surgeries [64]. EB-OCT, as a safe, 
non-invasive, and bronchoscope-compatible microscopic 
diagnostic method for ILDs, holds significant importance 
for early ILDs or IPF diagnosis. While some small-scale 
studies have shown its potential in diagnosing and eval-
uating fibrotic ILDs, large-scale clinical studies are still 
lacking. Future research efforts should focus on further 
validating the diagnostic accuracy and clinical applica-
tion prospects of EB-OCT to promote its widespread use 
in ILDs or IPF diagnosis.

Other diagnostic tools for early IPF diagnosis
Chest auscultation
Compared to HRCT scanning, chest auscultation is sim-
ple and convenient, offering a great value in screening 
for ILDs or IPF in the early stages. The wet crackle sound 
is a discontinuous, brief explosive non-musical sound 
mainly heard during inhalation [65]. Fine wet crackles are 
softer, shorter in duration, and higher-pitched compared 
to coarse wet crackles, and are associated with the sud-
den opening of airways in restrictive lung diseases [66]. 
The particular fine wet crackles heard in ILDs or IPF are 
commonly referred to as “Velcro crackles (VC)” and are 
typically heard in the lower posterior regions during late 
inspiration [67]. Compared to the later appearance of the 
UIP pattern, VC can be heard earlier in the fibrotic pro-
cess [68].

A prospective study of 132 suspected ILDs patients 
showed that all IPF patients had VC on auscultation. 
Furthermore, auscultatory VC was associated with radio-
logical UIP pattern [69]. A study utilizing ML to quan-
titatively analyze fine wet crackles for diagnosing ILDs 
showed that fine wet crackles had a higher sensitivity in 
distinguishing ILDs compared to chest X-rays [70]. Fine 
wet crackles are more common than symptoms or signs 
in IPF patients, and the identification of fine wet crack-
les is not influenced by obesity, symptoms, lung function, 
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emphysema, COPD, or clinical experience. The presence 
of fine wet crackles in chest auscultation is a sensitive, 
reliable, and useful screening tool, aiding in early ILDs or 
IPF diagnosis [71].

Serological biomarkers
Biomarkers are typically defined as characteristics that 
measure normal biological processes, pathogenic pro-
cesses, or responses to exposure or intervention [72].Var-
ious blood biomarkers have been studied in IPF, which 
are related to different pathogenic pathways. Some bio-
markers have shown promise for further research in early 
IPF diagnosis. For example, S100 calcium-binding pro-
tein A4 (S100A4), which belongs to the S100 superfam-
ily of intracellular binding proteins, plays an important 
regulatory role in the fibrotic process [73]. Compared to 
healthy control groups, IPF patients have significantly 
elevated levels of circulating fragments of cytokeratin-18 
(cCK-18) in the serum [74]. A meta-analysis demon-
strated that serum levels of  surfactant proteins(SP)-A 
are significantly higher in IPF patients compared to 
non-IPF ILDs, pulmonary infections, and healthy con-
trol groups. However, there is no significant difference 
in serum levels of SP-D between IPF and non-IPF ILDs 
patients [75]. Additionally, Krebs von den Lungen-6 
(KL-6) is elevated in the serum of several ILDs including 
IPF, but it is not specific enough to distinguish IPF from 
other ILDs [76]. Serum levels of matrix metalloprotein-
ase-7 (MMP-7) and osteopontin (OPN) are elevated in 
IPF patients. Furthermore, the combined use of multiple 
biomarkers can effectively differentiate IPF from other 
ILDs [77, 78]. A study analyzing plasma concentrations 
of 49 proteins in 79 IPF patients and 53 control sub-
jects identified a five-protein signature (MMP7, MMP1, 
MMP8, IGFBP1, and TNFRSF1A) that distinguished IPF 
patients from controls with 98.6% sensitivity and 98.1% 
specificity [79]. Another investigation demonstrated that 
elevated C-proSP-B levels could effectively differentiate 
IPF patients from those with other pulmonary diseases 
(p < 0.0001) [80]. Overall, the application of serologi-
cal tests in early IPF diagnosis is not widely utilized, and 
their role requires further research [17, 66].

Susceptibility genes
Several genes are associated with IPF susceptibility. A 
three-stage genome-wide association study (GWAS) 
revealed that different variants of TOLLIP could either 
decrease or increase the risk of pulmonary fibrosis 
development [81]. Additionally, multiple other poly-
morphisms in genes such as TGFβ-1, IL1RN, IL8, and 
HLA DRB1∗1501 have also been implicated in IPF sus-
ceptibility, though their exact roles remain unclear and 
require larger-scale studies [82]. The strongest genetic 
association with pulmonary fibrosis development and 

pathogenesis is the polymorphism in the MUC5B pro-
moter region [82]. The common polymorphism in the 
MUC5B promoter is related to both familial interstitial 
pneumonia and IPF. The single nucleotide polymorphism 
(SNP) rs35705950 in the MUC5B promoter region corre-
lates with elevated MUC5B expression levels, potentially 
because of its role in mucosal host defense. IPF subjects 
demonstrated higher pulmonary MUC5B expression 
compared to controls, with MUC5B protein expression 
also detected in fibrotic lesions of IPF [83]. This makes 
genomic screening potentially beneficial for identifying 
at-risk individuals for IPF.

Challenges and opportunities for early IPF 
diagnosis
There remain some challenges in the development and 
clinical application of CAD systems for IPF. First, model 
development requires abundant high-quality, unbi-
ased training data. Supervised models, such as CNN, 
also require a lot of effort to annotate images. How-
ever, the incidence rate of ILDs is relatively low, so it is 
hard for healthcare workers to obtain adequate data. 
To address this issue, we need to strengthen data shar-
ing while protecting patient privacy, merging confiden-
tial databases across institutions to create open-access 
databases. Alternative solutions to data scarcity include 
data augmentation which works by creating more train-
ing data by flipping, rotating, or scaling the images, and 
supervised pre-training which means that the param-
eters that solve one type of problem are taken directly 
as the initial parameters of the training to solve another 
problem. Unsupervised models have developed rapidly 
in recent years, which are suitable for scenarios with 
limited labeled data and relevant large unlabeled data, 
thereby making heavy annotation work unnecessary. 
Second, DL models can be developed on image biomark-
ers not previously visualized by the human eye, making 
them behave like black boxes. The complex architecture 
and numerous parameters of neural networks also make 
interpretation difficult. Before applying a model to the 
clinical setting, we need to understand why the model 
makes particular mistakes. Saliency maps can enhance 
explainability by helping people identify which part of 
the image is important to the algorithm. Image seg-
mentation can also enhance explainability [84]. In many 
studies, the performance of an algorithm is assessed by 
classification accuracy or area under curve (AUC), which 
does not reflect the clinical utility of the algorithm. Cli-
nicians and patients are more concerned about whether 
they will benefit from the algorithm, rather than the 
algorithm’s technical performance. The research should 
be performed in collaboration with clinicians for a more 
comprehensive evaluation of the performance of the 
algorithm [85]. Moreover, how to apply the algorithm in 
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clinical practice, whether it is used as a diagnostic crite-
rion or an aid, needs further examination and validation.

Conclusion and future directions
This review analyzed the current status and discussed the 
future perspective for early IPF diagnosis. Delayed diag-
nosis is common in IPF patients and is associated with 
a worse life quality and a worse outcome. Indeterminate 
UIP or ILAs at radiology may be an early IPF, but needs 
histological evidence and long-term CT follow-up. DL 
models, with their unique advantages, can unearth new 
radiologic biomarkers related to early IPF. Bronchoscopic 
examination plays an increasing role in the histopatho-
logical diagnosis of IPF. Other methods include chest 

auscultation and serological examination, etc (Fig.  4). 
Developing a reliable early IPF diagnostic model is very 
important for early identification and intervention of IPF, 
which may prolong patient survival.
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larlavage, PFTs = Pulmonary Function Test, and SHAP = SHapley Additive exPlanations
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