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Abstract
Background Systemic sclerosis (SSc) is a rare connective tissue disease associated with rapidly evolving interstitial 
lung disease (ILD), driving its mortality. Specific imaging-based biomarkers associated with the evolution of lung 
disease are needed to help predict and quantify ILD.

Methods We evaluated the potential of an automated ILD quantification system (icolung®) from chest CT scans, 
to help in quantification and prediction of ILD progression in SSc-ILD. We used a retrospective cohort of 75 SSc-ILD 
patients to evaluate the potential of the AI-based quantification tool and to correlate image-based quantification with 
pulmonary function tests and their evolution over time.

Results We evaluated a group of 75 patients suffering from SSc-ILD, either limited or diffuse, of whom 30 presented 
progressive pulmonary fibrosis (PPF). The patients presenting PPF exhibited more extensive lesions (in % of total lung 
volume (TLV)) based on image analysis than those without PPF: 3.93 (0.36–8.12)* vs. 0.59 (0.09–3.53) respectively, 
whereas pulmonary functional test showed a reduction in Force Vital Capacity (FVC)(pred%) in patients with PPF 
compared to the others : 77 ± 20% vs. 87 ± 19% (p < 0.05). Modifications of FVC and diffusing capacity of the lungs for 
carbon monoxide (DLCO) over time were correlated with longitudinal radiological ILD modifications (r=-0.40, p < 0.01; 
r=-0.40, p < 0.01 respectively).

Conclusion AI-based automatic quantification of lesions from chest-CT images in SSc-ILD is correlated with 
physiological parameters and can help in disease evaluation. Further clinical multicentric validation is necessary in 
order to confirm its potential in the prediction of patient’s outcome and in treatment management.
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Background
Systemic sclerosis (SSc) is a rare connective-tissue dis-
ease of unknown origin affecting multiple organs. Char-
acterized by autoimmunity, vessel inflammation, and 
organ fibrosis, SSc is classified by skin fibrosis extent 
into two patterns: limited cutaneous systemic sclerosis 
(lcSSc) and diffuse cutaneous systemic sclerosis (dcSSc). 
A significant complication of SSc is interstitial lung dis-
ease (ILD), which varies from slow to rapid progression 
[1–5]. Its clinical classification is based on the extent of 
skin fibrosis, which divides patients into two major pat-
terns: limited cutaneous systemic sclerosis (lcSSc), which 
is characterised by skin fibrosis limited to the elbows and 
knees; and diffuse cutaneous systemic sclerosis, which 
involves proximal areas, the face, and the trunk in addi-
tion to distal areas [6, 7]. A main complication of SSc that 
contributes to morbidity is the appearance of interstitial 
lung disease (ILD) [8, 9]. The clinical course of SSc-asso-
ciated interstitial lung disease (SSc-ILD) can range from 
a slowly progressing lung disease to a rapid progression 
[1]. The challenge, as with other ILDs [4], is identifying 
patients at high risk of progression and initiating early 
therapeutic intervention including immunosuppres-
sive and/or antifibrotic therapy in order to limit disease 
extension and clinical flare up [2].

Biomarkers are crucial for quantifying ILD in SSc, pro-
viding insights into disease activity, severity, progression, 
and treatment response. They aid in early detection, risk 
stratification, distinguishing ILD subtypes, and guid-
ing targeted treatment. Radiological ILD quantification 
on high-resolution CT (HRCT) is vital for monitoring 
disease progression, predicting outcomes, and identify-
ing patients for early intervention [10]. However visual 
assessment of HRCT in ILD is prone to high inter-
observer variability, poor reproducibility, and relative 
insensitivity to subtle disease progression over short 
follow-up periods. Machine learning models enhance 
HRCT assessments by accurately detecting and quantify-
ing lung abnormalities, offering reproducible evaluations 
and reducing inter-observer variability. These models 
also provide objective treatment response measures, 
improving drug development and patient selection in 
clinical trials [11–20].

In this study, we investigate the automatic AI-based 
quantification of interstitial lung abnormalities from 
HRCT in SSc-ILD patients and their correlations with 
standard clinical markers like pulmonary function tests.

Methods
Patients cohort
We retrospectively analyzed 75 patients with SSc-ILD 
from the ILD clinic of University Hospital of Liège (CHU) 
seen between 9th of january 2007 to 30th of september 
2022. Demographic data were collected (age, gender, 

BMI, tobacco status). Concerning systemic sclerosis clas-
sification, patients were classified according to the 2013 
ACR/EULAR criteria for SSc [6] and the distinction of 
the cutaneous forms into limited and diffuse was made 
according to the classification of Leroy et al. [7]. Sine 
scleroderma are patients without cutaneous disease with 
other organ involvement. Concerning ILD classification, 
patients were classified as progressive pulmonary fibro-
sis if they met INBUILD criteria (PF-ILD) which was the 
definition used before 2022 [21]. Criteria for fibrotic pro-
gression of ILD were, on a follow-up period of 24 months 
before analysis:

  • a relative decline in the forced vital capacity (FVC) of 
at least 10% of the predicted value;

  • or a relative decline in the FVC of 5% to less than 
10% of the predicted value and worsening of 
respiratory symptoms or an increased extent of 
fibrosis on high-resolution computed tomography 
(HRCT) of the chest;

  • or worsening of respiratory symptoms and an 
increased extent of fibrosis on HRCT.

A total of 55 patients had longitudinal follow-up CT 
scans (between 2 and 4 scans), among which 23 were PF-
ILD patients. The protocol was approved by ethics com-
mittee of CHU Liège, (Belgian number: B7072020000033) 
and all experiments were performed in accordance with 
relevant guidelines and regulations.

Pulmonary function tests
Lung function tests were performed in the routine respi-
ratory laboratory at CHU Liège in accordance with the 
recommendations of the European Respiratory Society 
(ERS) [22]. Volumes are expressed in liter (L)(absolute 
value) and as percentage of predicted normal values. The 
Tiffeneau index or FEV1/FVC is expressed as percent-
age. The diffusion capacity of CO (DLCO) and carbon 
monoxide transfer coefficient (KCO or DLCO/VA) were 
measured by the single breath testing technique (Sensor 
Medics 2400 He / CO Analyzer System, Bilthoven, The 
Netherlands).

Statistical analysis
Parametric distribution of continuous variables were 
described using means and standard deviations (SD) 
and non-parametric distributions were described using 
median (interquartile range: IQR) expressed as num-
ber (% Yes). Spearman correlation coefficient (r) [23] 
was used for correlation between PFT and imaging 
parameters (strong correlation r > 0.7; moderate 0.3–0.7; 
low < 0.3). Paired T-test and Wilcoxon matched-pairs 
signed rank test for parametric and non-parametric vari-
ables respectively [24] were used for the longitudinal 
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analysis. The comparison between SSc-ILD and SSc-
PFILD was analysed by unpaired T-test for FVC and 
DLCO and by Mann-Whitney test for TLV% and Sever-
ity score [25]. A p value less than 0.05 was accepted for 
statistical significance. Statistical analysis was performed 
using the TIBCO Statistica, v. 13.5.0, TIBCO Software 
Inc, Palo Alto, CA, USA and graphs using GraphPad 
Prism software version 9.0.0 for Windows, GraphPad 
Software, San Diego, California, USA software package.

Imaging parameters
All the CT images used in the study were acquired on 
one of the five multidetector CT scanners: Siemens Edge 
Plus (2), GE Revolution CT (1), and GE Brightspeed (2). 
Since CT images were collected retrospectively, no stan-
dardized scan protocol was available over the complete 
dataset. All scans were non-contrast High Resolution CT 
(slice thickness ≤ 1 mm) and acquired as per standard of 
care.

Icolung software
We employed the icolung software, which performs fully 
automatized segmentation of the lungs, lung lobes, and 
lung abnormalities (ground-glass opacity and consolida-
tion) consecutively using deep learning models. These 
convolutional neural network models are based on the 
2D and 3D U-net architectures described in [26, 27], and 
were trained, validated, and tested on clinical CT scans, 
along with voxel-level delineations of lung abnormali-
ties, created by expert radiologists. Based on the mod-
els’ predicted masks for lung abnormalities and lobes, 
the lung involvement in each lobe was computed as the 
ratio of abnormality volume vs. lobe volume, from which 
was derived a lobe-specific severity score (0–5). The five 
severity scores were then summed into a global sever-
ity score (0–25) for the patient’s current CT exam. An 
example of the software report is depicted in Fig. 1. The 
software output consisted of Total Lung volume (TLV) 
(L), Lung abnormalities (combining consolidation and 

Fig. 1 A) Icolung software output combining the overall automatized lung segmentation (TLV quantification) and the association with lobar abnormali-
ties. 3D analysis of parenchymal lung abnormalities: Coronal view illustrating automated lung segmentation and the visualization of abnormalities. The 
abnormalities are quantified using Icolung following lobe segmentation and represented with a conventional coronal view. The severity score is based 
on a five lung lobes scoring on a scale of 0 to 5, with 0 indicating no involvement (< 1%); 1, less than 5% involvement; 2, 5-25% involvement; 3, 26-49% 
involvement; 4, 50–75% involvement; and 5, more than 75% involvement. The total severity score is the sum of the individual lobar scores and range 
from 0 (no involvement) to 25 (maximum involvement). (B) Screenshots of the Icolung analysis report from baseline (left) and follow up scan (right) of 
SSc female patient, SCL-70 + treated with MMF exhibiting a PPF phenotype. FVC and DLCO (in % predicted) were 103% and 60% at baseline versus 60% 
and 28% at follow-up respectively. The 3D segmentation masks of the abnormalities are visualized in 2D axial and coronal views (red = consolidation, 
yellow = ground glass opacities)
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ground-glass opacities)(% of TLV), Consolidation (% 
of TLV), Ground-Glass Opacities (% TLV) and severity 
score per patient.

Results
The baseline clinical, functional and imaging parame-
ters of the patients are reported in Table 1. P values are 
reported for statistically significant differences between 
the SSc-ILD and SSc-PFILD groups.

The correlation between the lesion percentage out of 
the total lung volume (Lesion %) and the results of the 
pulmonary function tests (FVC and DLCO) is reported 
in Fig. 2. Both lung FVC and DLCO had a significant cor-
relation with the lesion extent percentage extracted from 

the image analysis (r=-0.50 and r=-0.46 respectively). The 
complete correlation analysis is reported in Table S1.

The comparison between SSc-ILD and SSc-PFILD 
patients is reported in Fig. 3. Statistically significant dif-
ferences were found between the two groups in terms 
of FVC (Fig.  3A), TLV% (Fig.  3B) and Severity score 
(Fig. 3D). Differences in DLCO values were not statisti-
cally significant (Fig. 3C).

Patients with SSc-PFILD displayed a higher extent 
of lesions out of the Total Lung Volume ( % TLV): 3.93 
(0.36–8.12) versus 0.59 (0.09–3.53)(p < 0.05) and a higher 
Severity score: 4 (1–6) versus 1 (0–4) than those of the 
SSc-ILD group (p < 0.05). Pulmonary functional tests 
showed a marked decrease in FVC: 77 ± 20% pred. for 

Table 1 Patients’ clinical, functional characteristics and imaging-based quantifications
Demography ALL SSc-ILD SSc-PFILD P value

N = 75 N = 45 N = 30
Age, years 55 (47–69) 58 (44–70) 53(47–65) 0.9147
Gender (M/F) 25/50 (33%) 11/34 (24%) 14/16 (52%) 0.0789
BMI, Kg/m² 25.1 ± 4.2 24.0 ± 5.1 25.0 ± 6.5 0.4804
Smokers NS/FS/CS (%) 51%/28%/22% 49%/28%/23% 54%/27%/19% 0.8629
Limited SSc/dcSSc/sine scleroderma (N) 56/12/7 36/2/7 20/10/0*** 0.0009
Positive Anti-scl-70 10 (14%) 6(13%) 4 (14%) > 0.9999
Pulmonary function test
FEV-1 (L) 2.29 ± 0.72 2.3 ± 0.69 2.27 ± 0.77 0.837
FEV-1 (% pred.) 83 ± 19 86 ± 18 77 ± 19 0.035
FVC (L) 2.83 ± 0.92 2.86 ± 0.87 2.79 ± 1.02 0.767
FVC (% pred.) 83 ± 20 87 ± 19 77 ± 20* 0.023
FEV1/FVC (Tiffeneau index)(%) 81 ± 7 82 ± 7 82 ± 7 0.529
MEF25-75 (L/s) 2.45 ± 0.94 2.45 ± 0.94 2.46 ± 0.95 0.770
MEF25-75 (%) 83 ± 27 86 ± 29 79 ± 24 0.343
TLC (L) 4.53 ± 1.28 4.64 ± 1.26 4.37 ± 1.32 0.342
TLC (% pred.) 81 ± 18 86 ± 19 73 ± 16** 0.002
RV (L) 1.74 ± 0.72 1.74 ± 0.74 1.72 ± 0.72 0.798
RV (% pred.) 88 ± 34 92 ± 37 82 ± 30 0.103
FRC (L) 2.94 ± 0.97 2.97 ± 1.02 2.89 ± 0.93 0.597
FRC (% pred.) 98 ± 29 102 ± 32 92 ± 24 0.133
DLCO (mmol.min− 1.Kpa− 1) 4.62 ± 1.83 4.63 ± 1.84 4.6 ± 1.84 0.836
DLCO (% pred.) 54 ± 18 56 ± 19 52 ± 17 0.553
KCO (mmol.min− 1.Kpa− 1.L− 1) 1.14 ± 0.29 1.13 ± 0.31 1.16 ± 0.26 0.354
KCO (% pred.) 76 (68–86) 76 (65–83) 77 (69–86) 0.213
sGaw (L.sec− 1.kPa− 1.L− 1) 1.23 ± 0.67 1.14 ± 0.6 1.37 ± 0.74 0.107
sGaw (% pred.) 86 ± 45 74 ± 35 103 ± 52* 0.046
CT Scan analysis
ILA out of lung volume (TLV in ml) 4028 (3327–5108) 4043 (3286–5004) 4024 (3330–5171) 0.952
TLV (%) 1.35 (0.1–5.89) 0.59 (0.09–3.53) 3.93 (0.36–8.12)* 0.035
Consolidation (%) 0.12 (0.01–0.87) 0.05 (0-0.28) 0.46 (0.03–1.59)* 0.023
Ground glass opacities (%) 1.06 (0.09–4.23) 0.5 (0.07–2.95) 2.97 (0.32–4.87) 0.092
Global severity score 2 (0–6) 1 (0–4) 4 (1–6)* 0.017
Data are expressed as mean ± SD and median (IQR) for parametric and non-parametric variables respectively. SSc-PFILD: SSc patients with PPF, NS/FS/CS: Non-smokers/
Former Smokers/Current smokers, lcSSc: limited cutaneous systemic sclerosis, dcSSc: diffuse cutaneous systemic sclerosis, ILA: Interstitial lung abnormalities, FEV1: 
Forced expired volume in one second, FVC: Forced vital capacity, MEF20-75: Maximal expiratory flow, TLC: Total Lung Capacity, RV: Residual volume, FRC: Functional 
residual capacity, DLCO: Diffusing lung capacity for CO, KCO: Carbon monoxide transfer coefficient, sGaw: Specific airways conductance, TLV: Total lung volume

Chest CT lesions quantifications were performed with ICOLUNG software

Valid N for TLC; RV; FRC; DLCO; KCO; sGaw (L.sec− 1.kPa− 1.L− 1); sGaw(% pred.) were respectively 68-67-63-71-62-34-20
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Fig. 3 Comparison between functional and imaging biomarkers in SSc-ILD and SSc-PFILD. Difference in FVC (A), TLV% (B), DLCO (C) and Severity score 
(D) for patients with SSc-ILD (blue bar) and SSc-PFILD (green bar). Data was analyzed by unpaired T test for FVC and DLCO and by Mann Whitney test for 
TLV and Severity score. *p value < 0.05

 

Fig. 2 Correlation between IA quantification of lesions and functional parameters. Correlation between percentage of lesions quantified out of the TLV 
from the AI algorithm with FVC (A) and DLCO (B)
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SSc-PFILD in comparison to the other group (FVC: 
87 ± 19% pred.)(p < 0.05). The complete results of the 
comparison tests are reported in Table S1 for the imaging 
parameters and PFTs.

A subsequent analysis was performed on 55 patients 
with longitudinal data (32 SSc-ILD and 23 SSc-PFILD), 
considering T1 as the scan at diagnosis and T2 as follow-
up scan. Figure 4 reports the variation over time of FVC 
(Fig. 4A), DLCO (Fig. 4B) and TLV% (Fig. 4C). The varia-
tion over T1 and T2 of TLV% showed moderate corre-
lation with both the variation of FVC (r= -0.40, p < 0.01) 
and DLCO (n = 48)(r= -0.40, p < 0.01) in Fig.  4D and E, 
respectively. The mean follow-up was 3.9 years (1.8–6.7)
(p = 0.45). The complete correlation analysis is reported 
in Table S1.

Discussion
Quantification of interstitial lung disease on CT scans 
is still challenging for clinicians. Qualitative and semi-
quantitative visual assessments of disease extent in ILDs 
have been adopted, the latter striving for quantification 
and standardization of the evaluation of disease extent 
in comparison to the former. However, both approaches 
suffer from moderate to high inter-reader variability 
(kappa value ranging from 0.28 to 0.85) [28], necessitate 
description of the location of the abnormalities allowing 
a basic quantification of ILD severity [29–31].

The differentiation of the abnormalities and the grading 
of each abnormal area still remains a challenge. Several 
different abnormalities can be present in ILD patients 
and even the most common, namely ground glass opaci-
ties (GGO), consolidation, reticulation and honeycomb-
ing, are difficult to differentiate and correctly attribute 
[32]. Moreover, these qualitative and semi-quantitative 
approaches are time consuming, dependent on radiologi-
cal expertise and prone to manual errors. In the present 
manuscript, we describe the application of an automated, 
reproducible, and accurate quantification tool that can 
help radiologists and clinicians overcome these limita-
tions, allowing a fully quantitative approach.

Novel solutions to unburden clinical staff, to help in the 
diagnosis process and evaluation of changes over time 
represent an urgent clinical need. In the last years, several 
additional deep learning (DL) methods have been put 
out for the purpose of identifying and quantifying lung 
abnormalities [33, 34], which can be then used to ILD 
lesions [35, 36], highlighting the potential benefits of this 
approach in the management of patients with restrictive 
lung diseases. Furthermore, several studies have reported 
correlations between this automatic AI-based quantifica-
tion of lung abnormalities and PFT parameters used in 
standard of care clinical practice for diagnosis and follow 
up. Si-Moahmed et al. [37] used a commercially available 
software tool to measure the lung CT volume and cor-
relate this with FVC and total lung capacity (TLC). Sue 

Fig. 4 ILD quantification compared to PFT modifications over time. A.B.C. Variation over time of FVC (A), DLCO (B) and TLV % (C). Data was analyzed by 
the paired T test for FVC and DLCO and by the Wilcoxon matched-pairs signed rank test for TLV %. T1 and T2 represent the two different timepoints for 
CT-scan analysis *P value < 0.05 ;**P value < 0.01. D.E. Correlation between the variation over the time of FVC (D) and DLCO (n = 48)(E) correlated with ILD 
progression over time out of the total lung volume (TLV %)
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et al. [38] explored the correlation between abnormalities 
pattern volume and vasculature volume with PFT param-
eters in a cohort of idiopathic pulmonary fibrosis (IPF) 
patients. In the specific scenario of SSc-related ILDs, 
Karadag et al. [39] investigated automatic extraction of 
textural lung features and their relationship to pulmonary 
function tests and visual fibrosis scores (VFS), finding 
moderate to strong correlations, and a notable distinc-
tion between PF and non-PF patients.

Our novel approach investigates the temporal progres-
sion of both progressive and non-progressive SSc-ILD 
patients, which is, to our knowledge, the first study to do 
so. It also clearly establishes a correlation between auto-
matic volumetric quantification of abnormalities and 
PFTs, enabling the characterization and distinction of 
both groups of patients. The ability to follow this change 
over time is of the utmost importance for therapy plan-
ning and follow-up, and it might promote the develop-
ment of innovative imaging-based endpoints in clinical 
trials when evaluating effectiveness of antifibrotic medi-
cations [40, 41]. Adding automatized HRCT quantifica-
tion tools in patients follow-up is of major interest as a 
clinical decision support companion aiming to reliably 
help clinicians in patients management.

The present approach combining AI-based image 
analysis and AI, tackles three of the key challenges in 
the management of ILD patients: early diagnosis, accu-
rate prognostication from baseline scans and therapy 
response monitoring over time [42]. The automatic quan-
tification of lung abnormalities could in turn streamline 
and simplify current classification criteria for ILDs, dis-
tinguishing between limited and extensive disease in a 
quantitative, robust and reproducible way, for example 
with an improved Goh algorithm for optimal progno-
sis of SSc-ILD patients [43, 44]. Moreover, the correla-
tions between both PFTs and imaging parameters in the 
cohort of progressive versus non progressive patients, 
may pave the road for the future development of an inte-
grated and automated image analysis tool able to predict 
patients with higher risk of developing PPF [45, 46]. This 
will improve patients’ management and result in better 
quality of life, when therapies can be delivered faster and 
more efficiently in a context of personalized medicine.

The current study has some limitations. The data are 
monocentric and retrospectively collected, so there is no 
homogenous image acquisition protocol nor scan acqui-
sition timeline. Moreover, we also included patients with 
limited lung involvement (< 10%) in the cohort. While 
this represents better the reality of clinical practice, the 
lack of homogeneous imaging parameters and compa-
rable scan acquisition times might have reduced the per-
formance and affect especially the longitudinal analysis 
and the overall correlation PFTs. We also used the PFILD 
definition as the patients were clinically classified before 

the publication of the guidelines. Nevertheless, the case 
review confirmed that all patients were also presenting 
the new PPF criteria. A prospective trial is envisioned in 
the future to provide more homogeneous data collecting 
and potentially extent longitudinal analysis to more than 
one follow-up scan. In addition, the current version of 
the software identifies and quantifies only ground glass 
opacities and consolidation. However, some reports in 
literature indicate variables correlations between other 
abnormal patterns and PFTs results, for example reticu-
lation which seems to be correlated with DLCO (r = 
-0.581) [47, 48]. Taking into account other abnormalities 
patterns in future analysis might refine even more the 
diagnostic and prognostic approach based on automatic 
AI quantification from chest CT scans.

Conclusion
Quantitative metrics obtained from AI-driven analy-
sis of chest CT images in SSc-ILD has shown promis-
ing results in the correlations with PFTs, supporting 
quantifiable and reproducible disease evaluation. This 
approach holds the potential to improve the management 
of SSc-ILD patients. However, prior to its integration into 
routine clinical practice, it is necessary to perform com-
prehensive clinical multicentric studies to validate the 
model outcomes and their correlation with standard of 
care PFTs. Along with this effort, we need to elucidate its 
ability to accurately predict patient outcomes, especially 
regarding the insurgence of progressive pulmonary fibro-
sis. The possibility of predicting PPF from baseline scans 
as well as response to therapy is an urgent clinical unmet 
need in the field of SSc-ILD.

Abbreviations
CT  Computed tomography
CNN  Convolutional Neural Network
DLCO  Diffusing lung capacity for CO
FEV-1  Forced expired volume in one second
FRC  Functional residual capacity
FVC  Forced vital capacity
GGO  Ground glass opacities
ILA  Interstitial lung abnormalities
ILD  interstitial lung disease
IPF  Idiopathic pulmonary fibrosis
IQR  interquartile range
KCO  Carbon monoxide transfer coefficient
lcSSc  limited cutaneous systemic sclerosis
dcSSc  Diffuse cutaneous systemic sclerosis
MEF20-75  Maximal expiratory flow
PFT  Pulmonary function test
PPF  Progressive pulmonary fibrosis
RV  Residual volume
SD  Standard deviations
sGaw  Specific airways conductance
SSc  Systemic sclerosis
TLC  Total Lung Capacity
TLV  Total lung volume
VFS  Visual fibrosis scores



Page 8 of 9Guiot et al. Respiratory Research           (2025) 26:39 

Supplementary Information
The online version contains supplementary material available at  h t t  p s : /  / d o  i .  o r 
g / 1 0 . 1 1 8 6 / s 1 2 9 3 1 - 0 2 5 - 0 3 1 1 7 - 9     .  

Supplementary Material 1

Acknowledgements
We thank Dr Marie ERNST from the biostatistical department for her help in 
statistical analysis and review.

Author contributions
JG and RL conceived the study. MH, JG and SVE analyzed the results. MH 
performed statistical analysis. JG, FG, BA, A-NF and CR conducted the 
experiments and acquired the data. BE acquired the funding. DS and SVE 
provided the icolung software. JG, BE, A-NF, SVE, GY, SW, VC and VS wrote 
the manuscript. KA, LC, JGS, HS, JS, IT, VC and ST reviewed and validated the 
manuscript.

Funding
This work was supported by the European Respiratory Society – Clinical 
Research Collaboration program through the PROFILE.net project and by a 
FIRS grant (University Hospital of Liège).

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
The study was approved by the University Hospital of Liege Institutional 
Review Board (7072020000033). Consent to participate was waived 
considering the retrospective nature of the study.

Consent for publication
Not applicable.

Clinical trial number
Not applicable.

Competing interests
D.S. is an employee and shareholder of icometrix. S.VE is an employee of 
icometrix.

Author details
1Department of Respiratory Medicine, University Hospital of Liège, Liège, 
Belgium
2Department of Rheumatology, University Hospital of Liège, Liège, 
Belgium
3icometrix, Leuven, Belgium
4Laboratory of Cellular and Molecular Pneumonology, School of 
Medicine, University of Crete, Heraklion, Crete, Greece
5Department of Respiratory Medicine, Maastricht University Medical 
Centre, Maastricht, the Netherlands
6Department of Rheumatology and Immunology, Department of 
Pulmonary Medicine, Inselspital, Bern University Hospital, University of 
Bern, Bern, Switzerland
7Department for BioMedical Research (DBMR), Lung Precision Medicine 
(LPM), University of Bern, Bern, Switzerland
8Department of Pneumology, ZNA Middelheim, Antwerpen, Belgium
9Mainz Center for Pulmonary Medicine, Department of Pneumology, 
Department of Pulmonary, ZfT, Mainz University Medical Center and 
Department of Pulmonary, Critical Care and Sleep Medicine, Marienhaus 
Clinic Mainz, Mainz, Germany
10Department of Pneumology, Hospital Clínic-Universitat de Barcelona, 
Barcelona, Spain
11Department of Pulmonary Medicine, SOTIRIA Chest Diseases Hospital of 
Athens, Athens, Greece
12Bioengineering Department and Imperial-X, Imperial College London, 
London, UK

13National Heart and Lung Institute, Imperial College London, London, UK
14National Reference Centre for Rare Pulmonary Diseases, Louis Pradel 
Hospital, member of ERN-LUNG, Hospices Civils de Lyon, UMR 754, INRAE, 
Claude Bernard University Lyon 1, Lyon, France
15Unit of Interventional Pulmonology, Department of Experimental and 
Clinical Medicine, Careggi University Hospital, Florence, Italy
16Department of Rheumatology, Ghent University Hospital, Ghent, 
Belgium
17Department of Internal Medicine, Ghent University, Ghent, Belgium
18Unit for Molecular Immunology and Inflammation, VIB Inflammation 
Research Centre (IRC), Ghent, Belgium

Received: 18 July 2024 / Accepted: 13 January 2025

References
1. Cottin V, Brown KK. Interstitial lung disease associated with systemic sclerosis 

(SSc-ILD). Respir Res Engl. 2019;20:13.
2. Vonk MC, Smith V, Sfikakis PP, Cutolo M, Del Galdo F, Seibold JR. Pharmaco-

logical treatments for SSc-ILD: systematic review and critical appraisal of the 
evidence. Autoimmun Rev Neth. 2021;20:102978.

3. Levin D, Osman MS, Durand C, Kim H, Hemmati I, Jamani K, et al. Hemato-
poietic cell transplantation for systemic Sclerosis-A review. Switzerland: Cells; 
2022. p. 11.

4. Fischer A, du Bois R. Interstitial lung disease in connective tissue disorders. 
Lancet (London, England). Engl; 2012;380:689–98.

5. O’Reilly S. Metabolic perturbations in systemic sclerosis. Curr Opin Rheumatol 
United States. 2022;34:91–4.

6. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et 
al. 2013 classification criteria for systemic sclerosis: an American college of 
rheumatology/European league against rheumatism collaborative initiative. 
Ann Rheum Dis Engl. 2013;72:1747–55.

7. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TAJ, et al. 
Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J 
Rheumatol Can. 1988;15:202–5.

8. Khanna D, Tashkin DP, Denton CP, Renzoni EA, Desai SR, Varga J, Etiology. Risk 
factors, and biomarkers in systemic sclerosis with interstitial lung disease. Am 
J Respir Crit Care Med United States. 2020;201:650–60.

9. Moinzadeh P, Bonella F, Oberste M, Weliwitage J, Blank N, Riemekasten G, et 
al. Impact of systemic sclerosis-Associated interstitial lung Disease With and 
without Pulmonary Hypertension on Survival: a large cohort study of the 
German Network for systemic sclerosis. Chest. 2024;165(1):132–45.

10. Distler O, Assassi S, Cottin V, Cutolo M, Danoff SK, Denton CP et al. Predictors 
of progression in systemic sclerosis patients with interstitial lung disease. Eur 
Respir J Engl; 2020;55.

11. Dack E, Christe A, Fontanellaz M, Brigato L, Heverhagen JT, Peters AA, et al. 
Artificial Intelligence and interstitial lung disease: diagnosis and prognosis. 
Invest Radiol United States. 2023;58:602–9.

12. Soffer S, Morgenthau AS, Shimon O, Barash Y, Konen E, Glicksberg BS, et al. 
Artificial Intelligence for Interstitial Lung Disease Analysis on chest computed 
tomography: a systematic review. Acad Radiol Elsevier. 2022;29:S226–35.

13. Handa T, Tanizawa K, Oguma T, Uozumi R, Watanabe K, Tanabe N, et al. Novel 
Artificial Intelligence-based technology for chest computed Tomography 
Analysis of Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc United States. 
2022;19:399–406.

14. Frix A-N, Cousin F, Refaee T, Bottari F, Vaidyanathan A, Desir C et al. Radiomics 
in Lung diseases Imaging: state-of-the-art for clinicians. J Pers Med. 2021.

15. Schniering J, Maciukiewicz M, Gabrys HS, Brunner M, Blüthgen C, Meier C 
et al. Computed tomography-based radiomics decodes prognostic and 
molecular differences in interstitial lung disease related to systemic sclerosis. 
Eur Respir J Engl; 2022;59.

16. Martini K, Baessler B, Bogowicz M, Blüthgen C, Mannil M, Tanadini-Lang S, 
et al. Applicability of radiomics in interstitial lung disease associated with 
systemic sclerosis: proof of concept. Eur Radiol Ger. 2021;31:1987–98.

17. Walsh SLF, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying 
fibrotic lung disease on high-resolution computed tomography: a case-
cohort study. Lancet Respir Med. Else; 2018;6:837–45.

18. Bonhomme O, André B, Gester F, de Seny D, Moermans C, Struman I, et al. 
Biomarkers in systemic sclerosis-associated interstitial lung disease: review of 
the literature. Rheumatol (Oxford) Engl. 2019;58:1534–46.

https://doi.org/10.1186/s12931-025-03117-9
https://doi.org/10.1186/s12931-025-03117-9


Page 9 of 9Guiot et al. Respiratory Research           (2025) 26:39 

19. Makol A, Nagaraja V, Amadi C, Pugashetti JV, Caoili E, Khanna D. Recent 
innovations in the screening and diagnosis of systemic sclerosis-associated 
interstitial lung disease. Expert Rev Clin Immunol Engl. 2023;19:613–26.

20. Hoffmann-Vold A-M, Maher TM, Philpot EE, Ashrafzadeh A, Distler O. Assess-
ment of recent evidence for the management of patients with systemic 
sclerosis-associated interstitial lung disease: a systematic review. ERJ open 
Res Engl. 2021;7.

21. Flaherty KR, Wells AU, Cottin V, Devaraj A, Walsh SLF, Inoue Y, et al. Nint-
edanib in progressive fibrosing interstitial lung diseases. N Engl J Med. 
2019;381:1718–27.

22. Stanojevic S, Kaminsky DA, Miller M, Thompson B, Aliverti A, Barjaktarevic I et 
al. ERS/ATS technical standard on interpretive strategies for routine lung func-
tion tests. Eur Respir J. 2021;2101499.

23. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and 
interpretation. Anesth Analg. 2018;126.

24. MacFarland TW, Yates JM. In: MacFarland TW, Yates JM, editors. Wilcoxon 
matched-pairs signed-ranks test BT - introduction to nonparametric statistics 
for the Biological sciences using R. Cham: Springer International Publishing; 
2016. pp. 133–75.

25. Fay MP, Proschan MA. Wilcoxon-Mann-Whitney or t-test? On assumptions 
for hypothesis tests and multiple interpretations of decision rules. Stat Surv. 
2010;4:1–39.

26. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: learn-
ing dense volumetric segmentation from sparse annotation. Lect Notes 
Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformat-
ics). 2016.

27. Ronneberger O, Fischer P, Brox T. In: Navab N, Hornegger J, Wells WM, Frangi 
AF, editors. U-Net: Convolutional Networks for Biomedical Image Segmenta-
tion BT - Medical Image Computing and Computer-assisted intervention – 
MICCAI 2015. Cham: Springer International Publishing; 2015. pp. 234–41.

28. Widell J, Lidén M. Interobserver variability in high-resolution CT of the lungs. 
Eur J Radiol Open. 2020;7:100228.

29. Watadani T, Sakai F, Johkoh T, Noma S, Akira M, Fujimoto K, et al. Interobserver 
Variability in the CT Assessment of Honeycombing in the lungs. Radiol Radio-
logical Soc North Am. 2013;266:936–44.

30. Aziz ZA, Wells AU, Hansell DM, Bain GA, Copley SJ, Desai SR, et al. HRCT diag-
nosis of diffuse parenchymal lung disease: inter-observer variation. Thorax. 
2004;59:506–11.

31. Occhipinti M, Bosello S, Sisti LG, Cicchetti G, de Waure C, Pirronti T, et al. 
Quantitative and semi-quantitative computed tomography analysis of 
interstitial lung disease associated with systemic sclerosis: a longitudinal 
evaluation of pulmonary parenchyma and vessels. PLoS ONE. 2019;14:1–18.

32. Axelsson GT, Gudmundsson G. Interstitial lung abnormalities - current knowl-
edge and future directions. Eur Clin Respir J. 2021;8:1994178.

33. Agarwala S, Kale M, Kumar D, Swaroop R, Kumar A, Kumar Dhara A et al. Deep 
learning for screening of interstitial lung disease patterns in high-resolution 
CT images. Clin Radiol. The Royal College of Radiol; 2020;75:481.e1-481.e8.

34. Mergen V, Kobe A, Blüthgen C, Euler A, Flohr T, Frauenfelder T et al. Deep 
learning for automatic quantification of lung abnormalities in COVID-19 
patients: first experience and correlation with clinical parameters. Eur J Radiol 
Open. 2020;7.

35. Walsh SLF, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying 
fibrotic lung disease on high-resolution computed tomography: a case-
cohort study. Lancet Respir Med. Else; 2018;6:837–45.

36. Ho TT, Kim T, Kim WJ, Lee CH, Chae KJ, Bak SH, et al. A 3D-CNN model with 
CT-based Parametric response mapping for classifying COPD subjects. Sci 
Rep Nat Publishing Group UK. 2021;11:1–12.

37. Si-Mohamed SA, Nasser M, Colevray M, Nempont O, Lartaud P-J, Vlachomi-
trou A, et al. Automatic quantitative computed tomography measurement 
of longitudinal lung volume loss in interstitial lung diseases. Eur Radiol. 
2022;32:4292–303.

38. Sun H, Liu M, Kang H, Yang X, Zhang P, Zhang R, et al. Quantitative analysis 
of high-resolution computed tomography features of idiopathic pulmonary 
fibrosis: a structure-function correlation study. Quant Imaging Med Surg 
China. 2022;12:3655–65.

39. Temiz Karadag D, Cakir O, San S, Yazici A, Ciftci E, Cefle A. Association of 
quantitative computed tomography ındices with lung function and extent 
of pulmonary fibrosis in patients with systemic sclerosis. Clin Rheumatol. 
2022;41:513–21.

40. Barnes H, Humphries SM, George PM, Assayag D, Glaspole I, Mackintosh JA, et 
al. Machine learning in radiology: the new frontier in interstitial lung diseases. 
Lancet Digit Heal Engl. 2023;5:e41–50.

41. Nathan SD, Meyer KC. IPF clinical trial design and endpoints. Curr Opin Pulm 
Med United States. 2014;20:463–71.

42. Cottin V. Interstitial lung disease: new challenges and evolving phenotypes. 
Eur Respir Rev. 2010;19:91 LP – 93.

43. Goh NSL, Desai SR, Veeraraghavan S, Hansell DM, Copley SJ, Maher TM, et al. 
Interstitial lung disease in systemic sclerosis: a simple staging system. Am J 
Respir Crit Care Med United States. 2008;177:1248–54.

44. Jeny F, Brillet P-Y, Kim Y-W, Freynet O, Nunes H, Valeyre D. The place of high-
resolution computed tomography imaging in the investigation of interstitial 
lung disease. Expert Rev Respir Med. Taylor & Francis; 2019;13:79–94.

45. Nagy T, Toth NM, Palmer E, Polivka L, Csoma B, Nagy A, et al. Clinical predic-
tors of lung-function decline in systemic-sclerosis-Associated interstitial lung 
disease patients with normal spirometry. Biomedicines. Switzerland; 2022. p. 
10.

46. Li L, Gao S, Fu Q, Liu R, Zhang Y, Dong X, et al. A preliminary study of lung 
abnormalities on HRCT in patients of rheumatoid arthritis–associated intersti-
tial lung disease with progressive fibrosis. Clin Rheumatol. 2019;38:3169–78.

47. Kazantzi A, Costaridou L, Skiadopoulos S, Korfiatis P, Karahaliou A, Daoussis 
D, et al. Automated 3D Ιnterstitial Lung Disease Εxtent quantification: perfor-
mance evaluation and correlation to PFTs. J Digit Imaging. 2014;27:380–91.

48. Occhipinti M, Bruni C, Camiciottoli G, Bartolucci M, Bellando-Randone S, 
Bassetto A et al. Quantitative analysis of pulmonary vasculature in systemic 
sclerosis at spirometry-gated chest CT. Ann Rheum Dis. 2020;79:1210–17.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Automated AI-based image analysis for quantification and prediction of interstitial lung disease in systemic sclerosis patients
	Abstract
	Background
	Methods
	Patients cohort
	Pulmonary function tests
	Statistical analysis

	Imaging parameters
	Icolung software
	Results
	Discussion
	Conclusion
	References


